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Outline

I Ultrasmall Aluminium grains
I Aluminium Films: a possible new
crossover regime

I Interactions: The Universal Hamiltonian
I Two tunnel-coupled dots above Tc with Φ

(tame)
I One dot below Tc with Φ (wild, in
progress)

I Conclusions and open questions



Ultrasmall Aluminium grains
What happens in a superconducting grain when the level
spacing δ becomes comparable to the superconducting gap ∆?
This question was answered by
Black, Ralph, and Tinkham PRL 74, 3241 (1995); PRL 76,
688 (1996)

who looked at the parity e�ect, namely the di�erence in the
addition energy between when the dot has an even number of
electrons versus an odd number.

∆ML = EN+1 − 1
2(EN + EN+2)

Matveev and Larkin, PRL 78, 3749 (1997); von Delft and
Ralph Phys. Rep. 345, 61 (2001).



Spin vs orbital e�ect of B
Consider an ultrasmall grain r nanometers in radius. l À r , so
the grain is ballistic. Putting in the parameters for Aluminium,
measuring energies in eV and magnetic �eld in Tesla

δ ' 10−2
r 3 ET ' 1

r

∆Bulk = 0.035 EZeeman ' 10−2B

EX ' ET

(
φ

φ0

)2
' 10−6r 3B2

So for ultrasmall grains

EX ¿ EZeeman



An Aluminium Pancake
Now consider a thin �lm in the shape of a pancake of
thickness t ' 2nm and radius r . For l ¿ r , we can increase
r ' 100nm and obtain for B = 0.1Tesla

δ ' 10−6 ET ' 10−2

EZeeman ' 10−3 EX ' 10−2

So it is possible to achieve

EX À EZeeman

Interesting new physics in the form of quantum criticality
becomes possible in this regime.



Quantum Criticality
A Quantum Phase Transition happens as a result of the change of
some parameter at T = 0. If that transition is II-order, then

I At the T = 0 transition, the frequency dependences of physical
quantities should be power law. Away from the transition, they
are universal scaling functions of ω/EQCX , where EQCX is the
crossover energy scale to the quantum critical regime.

I For T , ω 6= 0 a whole fan-shaped quantum critical regime is
controlled by the quantum critical point. All physical
quantities as a function of ω are given as universal scaling
functions of ω/T at the critical parameter.

I At the QPT, and therefore in the QCR, the ground and
excited states are dominated by many-body quantum
�uctuations. Quasiparticles may not exist.

I One needs nonperturbative methods to study the QCR. We
will use large-N methods.





Interactions
Put in all the simplest interactions which we know must be there,
Charging energy, Stoner exchange, and possibly BCS.

HCJ =
∑

εαc†αscαs +
U
2 N

2 − J~S2 − λ
∑

c†α↑c
†
α↓cβ↓cβ↑

This is the Universal Hamiltonian, and leads to good agreement
with experiment for Coulomb Blockade peak spacings and heights.

Andreev and Kamenev, PRL
81, 3199 (98)
Brouwer, Oreg, and Halperin,
PRB 60, R13977 (99)
Baranger, Ullmo, and Glazman,
PRB 61, R2425 (00)
Kurland, Aleiner, and
Altshuler, PRB 62, 14886 (00)



Main message of this talk

It is possible to use RMT crossovers between
di�erent symmetry classes to tune access to universal
quantum critical crossover regimes in many instances.
One needs (i) An order parameter undergoing a
phase transition in a pure ensemble (ii) A small
external perturbation which breaks the symmetry and
enhances quantum �uctuations.
Murthy, PRB 70, 153304 (2004); Zelyak, Murthy, and Rozhkov,
PRB 76, 125314 (2007); Murthy, PRB 77, 073309 (2008).



Setup: RMT Crossovers

For the GOE →GUE crossover, we parametrize the Hamiltonian as

HX =
HS + iXHA
1 + X 2

where X = φ/φ0 is the crossover parameter (φ0 = hc/e is the �ux
quantum). As the electron wanders through the dot, every
circumnavigation accumulates a phase ±2π φ

φ0 and takes a time L
vF .

After N circumnavigations, the typical phase accumulated is

θ ' 2π φ

φ0

√
N



When this phase becomes of order 2π the electron �knows� that
there is a �ux through the dot. This takes a time

τX ' φ2
0

φ2
L
vF

= X−2 L
vF

By the uncertainty principle, this corresponds to a crossover energy
scale

EX ' X 2ET
States separated by less than EX are fully crossed over, while those
separated by more than EX have correlations in the original
symmetry class. Extra correlations develop during the crossover.
For example

〈φ∗µ(i)φ∗ν(j)φν(k)φµ(l)〉 =
δilδjk
g2 +

δijδkl
g2

EX δ/π

E 2
X + (εµ − εν)2

Adam, Brouwer, Sethna, and Waintal, PRB 66, 165310 (2002).



A Central Point

RMT crossovers produce enhanced
correlations between wave functions which
strongly enhance quantum �uctuations in
interacting models.



Example 1: Two coupled dots above Tc



The Hamiltonian

H = H1 + H2 + Htunnel

H1 =
∑

ijs
H(O)
ij c†iscjs − g

∑

ij
c†i↑c

†
i↓cj↓cj↑

H2 =
∑

αβs
H(X )

αβ c†αscβs

Htunnel =
∑

iαs
Viαc†iscαs + h.c .



There are actually two di�erent RMT
crossover scales here. One is the GOE→GUE
crossover in dot 2, with the crossover scale
EX , and the other is the crossover scale
induced by the tunneling between the two
dots EU . For |ε1 − ε2| ¿ EU , the two wave
functions have RMT correlations, while for
large energy separations they are
uncorrelated.



Technical Details

I Decompose the BCS interaction in Hubbard-Stratanovich
in the imaginary time path integral to get the auxiliary
�elds ∆, ∆∗.

I Above Tc they have no mean value, and are purely
�uctuating. Integrate out the fermions to obtain the
e�ective action for ∆, ∆∗.

I For EU , EX À δ, the e�ective action is the sum of many
terms, and is self-averaging.

I The matrix elements that enter the e�ective action are
products of noninteracting wavefunctions, whose averages
can be found by Di�uson-Cooperon methods.



Some diagrams



Results for Tc
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Why is Tc nonmonotonic?

For small EU , note that Tc increases as the orbital �ux
through dot 2 is increased. This can be understood as follows:
When the two dots are coupled, the Tc drops from that of the
Al grain (call it Tc0 = 0.218meV ) because the BCS
interaction has to be shared between the dots. The
approximate expression of this suppression for EU À Tc0 is

Tc ' Tc0
ωD
EU

e−1/g

Heuristically, when EX increases the �rst e�ect is to gap the
Cooperon in dot 2, thus suppressing the tunneling, which has
the e�ect of increasing Tc .



Quasiparticle Broadening

At the quantum critical point at T = 0, the BCS order
parameter �uctuations have the dissipative action

∫ ∞

−∞

dω

2π |ω||∆(ω)|2

Quasiparticles scatter o� these quantum critical �uctuations,
and acquire a width

Γ(ω) ' δ log
(ω

δ

)

which is much broader than the usual Fermi-liquid-like form
Γ ' ω2/ET for weakly interacting dots.



One dot below Tc

So far we have been looking at the critical point, where there
is no mean value for ∆. Now let us go below Tc and see what
happens when an orbital �ux is turned on. Some previous work
Abrikosov and Gorkov, Sov. Phys. JETP 12, 1243
(1961)⇒�Gapless superconductor�
Larkin, Sov. Phys. JETP 21, 153 (1965)⇒�Gapless SC Grain�
S. Bahcall, PRL 77, 5276 (1996)⇒ RMT in the bulk of
high-Tc
Beloborodov, Efetov and Larkin, PRB 61, 9145 (2000)⇒
Phase diagram





Density of States
Assume for simplicity that EZeeman = 0, and the T-breaking is
purely orbital, characterized by EX = X 2ET . One can obtain the
mean-�eld DOS by large-N methods.

0 0.2 0.4 0.6 0.8 1
0

1

2

3

4

5

D
O

S

E
X

=0.001

E
X

=0.01

E
X

=0.05

E
X

=0.1

E
X

=0.2

E
X

=0.3

E
X

=0.5



The basic features of the DOS are:
I The sharp singularity at ∆ is broadened into a peak of

width ' E ( 2
3)

X

I The gap gets reduced to ∆− 3∆(1/3)E (2/3)
X

2(5/3)

I Beyond a critical EX = 2∆ the DOS at ω = 0 is nonzero.
I In the mean-�eld solution of the BCS problem, there is a

region of �gapless superconductivity� beyond this critical
Ex .



Ground state energy vs ∆
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Wildly broad quasiparticles?

We already know that the gapless superconductor has large
quantum �uctuations of ∆. The wavefunction of ∆ has a
width of ' EX . Consider the exact single-particle Green's
function for a particular sample

G ss′
ij =

∑
ασ

φασ(is)φ∗ασ(js ′)
ω − σEα

Both φασ and Eα are implicit functions of ∆. Consider the
static path approximation for G , which means integrating it
over ∆ with the proper weight, that is, the proper
wavefunction. From studies of parametric correlations, we
know that even tiny changes of ∆ of order δ/

√
N scramble the

wavefunction completely. So the integral over ∆ is equivalent
to a disorder average ⇒ Broad quasiparticles with Γ ' EX .



Summary

I
Disorder and interactions can be treated nonperturbatively
together in quantum dots described by RMT, thanks to large
N or large NX = EX/δ, N∆ = ∆/δ.

I
Soft symmetry-breaking by RMT crossovers strongly enhances
quantum �uctuations.

I
The gapless superconducting grain with EX À EZeeman seems
particularly suited to large quantum �uctuations and very
broad quasiparticles.



Take-home message

A class of universal interacting
crossover ensembles which are
the many-body descendants
of RMT single-particle
crossover ensembles.



Open Questions

I Tunneling DOS of the gapless
superconductor?

I Spin susceptibility⇒ Pseudogap?
I Quantum critical scaling for nonzero T ?






