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Outline

» Ultrasmall Aluminium grains
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progress)
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Ultrasmall Aluminium grains

What happens in a superconducting grain when the level
spacing 0 becomes comparable to the superconducting gap A?
This question was answered by

Black, Ralph, and Tinkham PRL 74, 3241 (1995); PRL 76,
688 (1996)

who looked at the parity effect, namely the difference in the
addition energy between when the dot has an even number of
electrons versus an odd number.

1
Ap = Eng1 — E(EN + En+2)

Matveev and Larkin, PRL 78, 3749 (1997); von Delft and
Ralph Phys. Rep. 345, 61 (2001).




Spin vs orbital effect of B
Consider an ultrasmall grain r nanometers in radius. /> r, so

the grain is ballistic. Putting in the parameters for Aluminium,
measuring energies in €V and magnetic field in Tesla
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So for ultrasmall grains

EX < EZeeman



An Aluminium Pancake

Now consider a thin film in the shape of a pancake of
thickness t ~ 2nm and radius r. For | < r, we can increase
r ~ 100nm and obtain for B = 0.1 Tesla

5~10"° Er ~ 1072

EZeeman = 10_3 EX >~ 10_2

So it is possible to achieve

EX > EZeeman

Interesting new physics in the form of quantum criticality
becomes possible in this regime.




Quantum Criticality

A Quantum Phase Transition happens as a result of the change of
some parameter at T = 0. If that transition is |l-order, then

> At the T = 0 transition, the frequency dependences of physical
quantities should be power law. Away from the transition, they
are universal scaling functions of w/Egcx, where Egcx is the
crossover energy scale to the quantum critical regime.

» For T,w # 0 a whole fan-shaped quantum critical regime is
controlled by the quantum critical point. All physical
quantities as a function of w are given as universal scaling
functions of w/T at the critical parameter.

» At the QPT, and therefore in the QCR, the ground and

excited states are dominated by many-body quantum
fluctuations. Quasiparticles may not exist.

» One needs nonperturbative methods to study the QCR. We .f' -;'-'-:'I e
will use large-N methods.
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Interactions

Put in all the simplest interactions which we know must be there,
Charging energy, Stoner exchange, and possibly BCS.

U N
Hey = Zﬁaclscas + §N2 —JS% — )\Z cchllcmcm

This is the Universal Hamiltonian, and leads to good agreement
with experiment for Coulomb Blockade peak spacings and heights.




Main message of this talk

It is possible to use RMT crossovers between
different symmetry classes to tune access to universal
quantum critical crossover regimes in many instances.
One needs (i) An order parameter undergoing a
phase transition in a pure ensemble (ii) A small
external perturbation which breaks the symmetry and
enhances quantum fluctuations.
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Setup: RMT Crossovers

For the GOE —GUE crossover, we parametrize the Hamiltonian as

b _ Hs + iXH
X~ 1 x2

where X = ¢ /¢y is the crossover parameter (¢g = hc/e is the flux
quantum). As the electron wanders through the dot, every
circumnavigation accumulates a phase i27r¢% and takes a time
After N circumnavigations, the typical phase accumulated is
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When this phase becomes of order 27 the electron “knows” that
there is a flux through the dot. This takes a time

% L ol
Txﬁff:X —
2 vF VF

By the uncertainty principle, this corresponds to a crossover energy
scale

Ex ~ X’Er

States separated by less than Ex are fully crossed over, while those
separated by more than Ex have correlations in the original
symmetry class. Extra correlations develop during the crossover.
For example
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A Central Point

RMT crossovers produce enhanced
correlations between wave functions which
strongly enhance quantum fluctuations in

interacting models.




Example 1: Two coupled dots above T,
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The Hamiltonian

H = Hi + Ha + Hiypner

_ (0) .t Tt
Hu= D Hi s — 8 ) circi Gt
ijs if

X
Hp = Z H((xﬁ)clscﬁs
afls

Hiunner = Z ViaC,-TsCas + h.c.
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There are actually two different RMT
crossover scales here. One is the GOE—GUE
crossover in dot 2, with the crossover scale
Ex, and the other is the crossover scale
induced by the tunneling between the two
dots Ey. For |e; — €| < Ey, the two wave
functions have RMT correlations, while for
large energy separations they are
uncorrelated.




Technical Details

» Decompose the BCS interaction in Hubbard-Stratanovich
in the imaginary time path integral to get the auxiliary
fields A, A*.

» Above T, they have no mean value, and are purely
fluctuating. Integrate out the fermions to obtain the
effective action for A, A*.

» For Ey, Ex > 6, the effective action is the sum of many
terms, and is self-averaging.

» The matrix elements that enter the effective action are
products of noninteracting wavefunctions, whose averages
can be found by Diffuson-Cooperon methods.




Some diagrams
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Results for T,
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Why is T. nonmonotonic?

For small Ey, note that T. increases as the orbital flux
through dot 2 is increased. This can be understood as follows:
When the two dots are coupled, the T, drops from that of the
Al grain (call it T, = 0.218meV) because the BCS
interaction has to be shared between the dots. The
approximate expression of this suppression for Ey > T is

wp _
T~ TCOE_ze e

Heuristically, when Ex increases the first effect is to gap the
Cooperon in dot 2, thus suppressing the tunneling, which has
the effect of increasing T..




Quasiparticle Broadening

At the quantum critical point at T = 0, the BCS order
parameter fluctuations have the dissipative action
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Quasiparticles scatter off these quantum critical fluctuations,
and acquire a width

M(w) =~ dlog (%)

which is much broader than the usual Fermi-liquid-like form
[ ~ w?/E7 for weakly interacting dots.




One dot below T,

So far we have been looking at the critical point, where there
is no mean value for A. Now let us go below T, and see what
happens when an orbital flux is turned on. Some previous work
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Density of States
Assume for simplicity that Ezeeman = 0, and the T-breaking is

purely orbital, characterized by Ex = X2Er. One can obtain the
mean-field DOS by large-N methods.
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The basic features of the DOS are:

» The sharp singularity at A is broadened into a peak of
width ~ E)(<5

3A(1/3)E(2/3)
> The gap gets reduced to A — —— 55—

» Beyond a critical Ex = 2A the DOS at w = 0 is nonzero.

» In the mean-field solution of the BCS problem, there is a

region of “gapless superconductivity” beyond this critical
E,.




Ground state energy vs A

Delta




Wildly broad quasiparticles?

We already know that the gapless superconductor has large
quantum fluctuations of A. The wavefunction of A has a
width of ~ Ex. Consider the exact single-particle Green's
function for a particular sample

SS ¢OCO' ' )
Gij Z w — O'E

Both ¢, and E, are implicit functions of A. Consider the
static path approximation for G, which means integrating it
over A with the proper weight, that is, the proper
wavefunction. From studies of parametric correlations, we
know that even tiny changes of A of order §/v/N scramble the
wavefunction completely. So the integral over A is equivalenifa@
to a disorder average = Broad quasiparticles with I ~ Ex. ‘14




Summary




Take-home message

A class of universal interacting
crossover ensembles which are
the many-body descendants
of RMT single-particle
crossover ensembles.




Open Questions

» Tunneling DOS of the gapless
superconductor?

» Spin susceptibility= Pseudogap?

» Quantum critical scaling for nonzero T 7










