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Mesoscopic AB interferometers
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Via a novel interference experiment, which measure:
coefficient through a quantum dot in the Coulomb regim
transport through the dot has a coherent component. V
coefficient at successive Coulomb peaks, each representin
hﬂwever, as we scan rhmugh a *-lnglc Coulomb peak
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Phase symmetry
(phase rigidity, phase locking)

Onsager-Bluttiker relation for a linear response
conductance of a two-terminal device:

This relation is a result of the time-reversal symmetry!
Two-terminal device M. Battiker, Phys. Rev. Lett. 57, 1761 (1986).
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Bypassing phase symmetry

Phase lapse — abrupt change of the transmission phase via a
guantum dot AB by = (even when no QD levels cross the Fermi level)
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Magnitude of AB oscillations
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Schuster et al., Nature 385, 417 (1997) | [e '
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Phase slips are due to competition
between different levels with opposite

number of phase slips =

number of levels

parity

Magnitude of AB oscillation
[arbitrary units)

Phase of AB oscillations ()
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Oreg and Gefen, Phys. Rev. B 55, 13726 1997
Baltin and Gefen, Phys. Rev. Lett. 83, 5094 1999

Silvestrov and Imry, Phys. Rev. Lett. 85, 2565 2000
Golosov and Gefen, Phys. Rev. B 74, 205316 2006
Karrasch, et al., Phys. Rev. Lett. 98, 186802 2007



Breaking of phase symmetry out of

equilibrium

® Breaking of phase symmetry
only for even components

e Continuous breaking of
symmetry with voltage
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J = Z Glnt(y — Vo )"

n=l

Leturcq et al. (2006)
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Puzzle: Experiment by Sigrist et al.

PHYSICAL REVIEW LETTERS

PRL 98, 036805 (2007)

week ending
19 JANUARY 2007

> Conductanceis symmetric in magnetic field even at high bias

» Conductance phase switches between 0 and #
» 3Switching beginsfor V~4
» More Snitchesthan levels
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Conductance is symmetric in magnetic field even at high bias
Conductance phase switches between 0 and #

Switching begins for V~4
More Snmtches than levels

(b) MNormalized AB conductance
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Phase switching
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Approximate condition for switching

+I,/2
t,(E) = =2 +/i 72 (D)0t tl(E)CO{ZﬂqcfoJ
_ — r2/2
t,(E) = E-g,+il,/2 |(P) 0t tz(E)co{Zﬂqcfj
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Multiple switchings

Mean Conductance P,=0r G(P)
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1.04 -1 Chronology of switching events:
gl 1st switching: population of level 2 starts to grow: V>¢,-¢,;
S ! = 2"d switching: level 3 starts being populated from level 2:
S &= ff“ 3'd switching: contribution from level 2 grows faster than that
0.2+ : due to levels 1 and 3;
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Bias Voltage
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Conductance even in magnetic
field even at finite bias 7?77
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Higher order
processes
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Theoretical analysis: summary

» Leading contribution to the AB oscillations is even in the
magnetic field

» Odd contribution to the AB oscillations originates from
the higher—order processes (in which the intermediate
state lies on the same energy shell with the initial and
the final states)

» Breaking of the phase symmetry may happen only after
the onset of inelastic co-tunneling

» Breaking of the phase symmetry Is best observed near
phase switching when leading order vanishes.
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Comparing to the experiment

a

P(Vsd) = \/.’-g’”“"'dBGz (B ’ Vsd) / (Bifla,x;Biflirz)

min asym

Theory

Experiment
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Nonequilibrium can lead to breaking of
phase rigidity, can it be used to measure the
transmission phase through the dot ?

Problem: we want to measure the
equilibrium transmission phase !

Solution: couple other parts of the system to
nonequilibrium environment

D. Sanchez and K. Kang, (2008)



Proposed Experiment

QD1

Left lead Right lead

» Aim: measuring transmission phase via QD1

U » Phase rigidity breaking due to coupling QD2
g to a non-equilibrium environment, played
e here by a quantum point contact.




‘Which path?’ detector

(a) -
4 Oxide lines on
Oxide lines on thin Ti film
GaAs surface
N

¥

500 nm

letters to nature

Dephasing in electron
interference by a
‘which-path’ detector

E. Buks, R. Schuster, M. Heiblum, D. Mahalu & V. Umansky

Braun Center for Submicron Research, Department of Condensed Matter Physics,
Weizmann Institute of Science, Rehovot 76100, Israel

Wave—particle duality, as manifest in the two-slit experiment,
provides perhaps the most vivid illustration of Bohr’s comple-
mentarity principle: wave-like behaviour (interference) occurs
only when the different possible paths a particle can take are
indistinguishable, even in principle'. The introduction of a which-
path (welcher Weg) detector for determining the actual path taken
by the particle inevitably involved coupling the particle to a
measuring environment, which in turn results in dephasing
(suppression of interference). In other words, simultaneous
observations of wave and particle behaviour is prohibited. Such

VOLUME 79, NUMBER 19 PHYSICAL REVIEW LETTERS 10 NOVEMBER 1997

Dephasing and the Orthogonality Catastrophe in Tunneling through a Quantum Dot:
The “Which Path?” Interferometer

I.L. Aleiner,' Ned S. Wingreen,' and Yigal Meir?
'NEC Research Institute, 4 Independence Way, Princeton, New Jersey 08540
2Phvsics Department. Ben Gurion University. Beer Sheva. 84105. Israel




Phase rigidity breaking

AB conductance for Vopc=0

phase jump
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Measuring the transmission phase

QD1

Transmission coefficient through QD1:

ipgp1(er)

topi(er) = [topi(er)|e

Left lead Right lead

Conductance of (isolated) QD1

;U Go 2
——e— Gopiler) = - ltopi(er)|
QPC

Odd component of AB conductance (v(ep) < ' < |62 — €p| ):

Go V(GF)\/ F§2F§2 |F2L2 - F§2

G (ep, ) ~ tsin
(€r:2) i 2(I'22 +(e2)) [(62 — )+ § (P2 +7(e2))

2} Rltopi(er) —topi(e)]

Dephasing rate (for different €,)
Godd 0.01 —F —

cos [pqQp1(€r)] o JCont

y [ueV]

% 700 200 300 400
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Measuring transmission phase

Two levels of the same parity

R
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Two levels of different parities
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> Zeros of G°dd correspond to phase #/2 or a phase jump/lapse by =
» Zeros of G°dd have to be matched with those of |ty (ep)|
» Normalizing cosine to [-1,1]: prefactor is proportional to dephasing rate

V.P.&Y.M, PRL 104, 256801 (2010).



Summary

Phase switching:

‘Phase switching’ in non-equilibrium co-tunneling transport via
guantum dots can be explained as a result of the current via the
iInterferometer being dominated at different bias by the QD levels of
different parity.

Phase rigidity breaking in co-tunneling transport:

The processes contributing to breaking of the phase rigidity in the
co-tunneling transport are of higher order than the main AB
contribution which explains why the AB phase significantly deviates
from O and m only close to the phase switching points. In addition,
no breaking of the phase symmetry occurs up to the onset of the
Inelastic co-tunneling.

Measuring transmission phase via a closed AB interferometer:

The transmission phase through a quantum dot can be measured by
Inserting it into the reference arm of a ‘which path?’ detector.



