

Aharonov-Bohm conductance through a single-channel quantum ring

Igor Gornyi

Collaboration: A.Dmitriev (PTI), V. Kachorovskii (PTI), D. Polyakov (KIT)

The Science of Nanostructures: New Frontiers in the Physics of Quantum Dots Chernogolovka, Russia, September 22, 2010

Outline:

 $single-channel\ quantum-ring\ interferometer$

- ▷ Aharonov-Bohm resonances
- $\triangleright \quad \text{correlated electrons on the ring:} \\ \begin{array}{c} \mathbf{Persistent-Current \ Blockade} \\ \hline & \longrightarrow \text{ novel type of Coulomb oscillations} \end{array}$
- dephasing vs charge quantization: suppression of plasmon-induced dephasing Zero-Mode Dephasing

PRL '10

Aharonov-Bohm interferometer

$$I = G(\phi)V$$

Aharonov-Bohm effect:

$$G(\phi + 1) = G(\phi) \qquad \begin{aligned} \phi &= \Phi/\Phi_0 \\ \Phi_0 &= hc/e \end{aligned}$$

Key parameter: phase breaking rate
$$\,1/ au_{arphi}$$

AB conductance: what is known

<u>Multi-channel</u> quantum_ring (quasi-1D): two types of conductance oscillations with the periods

$$\Delta \phi = 1, \quad \Delta \phi = 1/2$$

AB oscillations are suppressed by dephasing

Dephasing is due to thermal fluctuations of electric potential created by other electrons (Nyquist bath)

Altshuler, Aronov, Khmelnitskii '82

Single-channel quantum ring :

role of e-e interaction is dramatically enhanced

$G(\phi)$ for low temperature $T << \Delta$ (level spacing): no dephasing \rightarrow sharp AB resonances affected by Coulomb blockade

Jagla & Balseiro '93 Kinaret, Jonson, Shekhter, Eggert '98 Pletyukhov, Gritsev, Pauget '06 Eroms, Mayrhofer, Grifoni '08

We focus on the opposite limit $T >> \Delta$:

- Interference is not destroyed by thermal averaging: conductance shows sharp anti-resonances
- AB dephasing differs qualitatively

from the multi-channel case

Formulation of the problem: Parameters

 E_F

(spinless) electrons in a single-channel ballistic ring of length *L*

$$E_F \gg T \gg \Delta \gg \Gamma$$

- Δ level spacing
- Γ tunneling rate

Interaction: Luttinger liquid model

$$g \ll 1$$

Hamiltonian

$$H = H_{\rm ring} + H_{\rm tun} + H_{\rm leads}$$

$$H_{\text{ring}} = \sum_{\mu = \pm} \int_{0}^{L} dx \left(-i\mu v \psi_{\mu}^{\dagger} D_{x} \psi_{\mu} + \frac{1}{2} V_{0} \hat{n}_{\mu} \hat{n}_{-\mu} \right)$$
$$D_{x} = \partial_{x} - 2\pi i \phi / L \qquad \phi = \Phi / \Phi_{0} \qquad \hat{n}_{\mu} = :\psi_{\mu}^{\dagger} \psi_{\mu}:$$

$$H_{\rm tun} = t_0 \left[\psi_L^{\dagger} \psi(0) + \psi_R^{\dagger} \psi(L/2) \right] + \text{h.c.}$$

 H_{leads} \rightarrow structureless density of states in the leads

Noninteracting case: Landauer approach

T=0 \rightarrow resonances for $kL + 2\pi\phi = 2\pi l$ $kL - 2\pi\phi = 2\pi m$

sharp dependence on both *k* and ϕ

$$T >>\Delta \quad \Rightarrow \quad A_R, A_L \text{ oscillate rapidly with changing energy}$$
$$A_R A_L^* = \sum_{n=0}^{\infty} \sum_{m=0}^{\infty} e^{i(kL+2\pi\phi)(1/2+n)} e^{-i(kL-2\pi\phi)(1/2+m)}$$

$$\left\langle e^{ikL(n-m)} \right\rangle_T \to 0$$
, for $n \neq m \Rightarrow$ only *n=m* terms contribute, no dependence on *k*

but (!) the resonant dependence on ϕ survives

$$\phi = 1/2 \Rightarrow A_R^n = -A_L^n \Rightarrow G = 0$$

destructive interference for any energy Büttiker, Imry, Azbel '84; Gefen, Imry, Azbel '84

$$G(\phi + 1) = G(\phi)$$

non-interacting case: narrow AB anti-resonances at $\phi = 1/2, 3/2,...$

$$\frac{G(\phi)}{G(0)} = \frac{\cos^2(\pi\phi)[1 + (\Gamma/\Delta)^2]}{\cos^2(\pi\phi) + (\Gamma/\Delta)^2} \approx \frac{(\phi - 1/2)^2}{(\phi - 1/2)^2 + (\Gamma/\Delta)^2}$$

for $|\phi - 1/2| \ll 1$

Expectation \rightarrow interaction leads to the broadening of the anti-resonances: width $1/\tau_{\varphi}$

Evolution of AB conductance with increasing interaction strength *g*

Main results:

1. Interaction splits the AB resonances

 $\mathcal{T}_{(\alpha)}$

2. Interaction-induced dephasing rate does not depend on g Two types of excitations in a single-channel ring

1) Bosonic excitations with $q \neq 0$:

right- and left-moving plasma waves

$$\varphi_R = \varphi + \theta, \quad \varphi_L = \varphi - \theta$$

 $\rho = (1/\pi) \partial \varphi / \partial x, \quad j = (v_F/\pi) \partial \theta / \partial x.$

2) **Bosonic excitations with** *q***=0** : Zero-mode excitations

$$\hat{Q} = \hat{N}_R + \hat{N}_L$$

t

$$\hat{J} = \hat{N}_R - \hat{N}_L$$

circular (persistent) current

 $N_{R,L}$ - numbers of right- and left-movers in the ring

Zero-mode energy

$$\epsilon_{N_R, N_L} = \frac{\Delta}{4} \left[\frac{(N_R + N_L - 2N_0)^2}{K} + K(N_R - N_L - 2\phi)^2 \right]$$

Splitting of AB resonances by the ZM interaction

$$G_{\rm int}(\phi) \propto {\rm Re}({\rm A_RA_L^*}) \leftarrow {\rm interference\ part\ of\ the\ conductance}$$

$$A_{R,L} \propto |A_{R,L}| e^{i\alpha_{R,L}}$$

$$\alpha_R = (\epsilon_{N_R+1,N_L} - \epsilon_{N_R,N_L})L/2u$$

$$\alpha_L = (\epsilon_{N_R,N_L+1} - \epsilon_{N_R,N_L})L/2u$$

phases acquired by a tunneling electron along two interfering paths

$\alpha_R - \alpha_L pprox g(N_R - N_L) \Rightarrow \delta \phi pprox g(N_R - N_L)$

Splitting is due to the quantization of circular current $\hat{J} = \hat{N}_R - \hat{N}_L$ **Persistent-Current Blockade** $\frac{G(\phi)}{G(0)} \approx \frac{1}{Z} \sum_{N_R, N_L} e^{-\epsilon_{N_R, N_L}/T} \frac{[\phi - 1/2 - gJ]^2}{[\phi - 1/2 - gJ]^2 + (\Gamma/\Delta)^2}$ without dephasing

$$\begin{array}{ll} \delta J\sim \sqrt{T/\Delta} &\Rightarrow \delta\phi_T=g\delta J=g\sqrt{T/\Delta} \\ & \mbox{width of the Zug} \end{array}$$

Absence of the plasmon mechanism of dephasing

Fluctuating potential created by the plasmon thermal bath

$$U(x,t) = U_R(x - ut) + U_L(x + ut)$$

Properties of the plasmon bath in the ring:

1) Closed geometry:

 $U_{R,L}$ are periodic functions of x with the period $L \Rightarrow$ they are also periodic functions of t with the period L/u

2) Hartree-Fock cancellation for a short range potential:

Right-movers do not interact with U_R , and left-movers do not interact with U_L

$$\alpha_R = \int_0^t dt U_L[x(t) + ut] = \int_0^t dt \ U_L(2ut)$$
$$\alpha_L = \int_0^t dt U_R[x(t) - ut] = \int_0^t dt \ U_R(-2ut)$$

 $U_{R,L}$ are random on the short time scale but repeat themselves periodically with the period L/2u

Dephasing is due to circular-current fluctuations

$$\phi_{N_R,N_L} = \frac{1}{2} + g(N_R - N_L)$$
 positions of the resonances

$$N_{R,L} \rightarrow N_{R,L}(t)$$
, $J(t) = N_R(t) - N_L(t)$

$$V_{eff}(t) = gJ(t)\Delta$$
 dephasing
potential
 $e^{i(\alpha_R - \alpha_L)} = e^{i\int_0^t V_{eff}dt} = e^{ig\Delta\int_0^t Jdt}$

Time scale of the current fluctuations

$$J(t) = N_R(t) - N_L(t)$$

 T/Δ - number of active levels >>1

population of one level fluctuates on a time scale $1/\Gamma$

$$\delta t = \frac{1}{\Gamma} \frac{\Delta}{T}$$

$$\Gamma_{\varphi} = \Gamma \frac{T}{\Delta}$$

- much faster than the tunneling
- does not depend on the interaction

Dephasing by telegraph noise

$$e^{S} = \left\langle e^{ig\Delta \int_{0}^{t} dt(N_{R} - N_{L})} \right\rangle = \left\langle e^{ig\Delta \int_{0}^{t} dtN_{R}} e^{-ig\Delta \int_{0}^{t} dtN_{L}} \right\rangle$$
$$= \left\langle e^{ig\Delta \int_{0}^{t} dtN} \right\rangle \times \left\langle \text{ c.c.} \right\rangle$$
$$N = n_{1} + n_{2} + \dots + n_{N} + \dots$$
$$n_{N} = 0, 1 = T / \Delta$$
$$e^{S} = \prod \left\langle e^{ig\Delta n_{N}t} \right\rangle \prod \left\langle c.c. \right\rangle$$

 $n_N = 0, 1 \implies \text{telegraph noise} \implies \text{dephasing}$

N

Paladino, Faoro, Falci, Fazio '02 Grishin, Yurkevich, Lerner '05 Galperin, Altshuler, Bergli, Shantsev '06 Schriefl, Makhlin, Shnirman, Schoen '06 Neder, Marquardt '07 Neuenhahn, Kubala, Abel, Marquardt '08 Abel, Marquardt '08

N

Dephasing action

$$e^{S} = \prod_{N} \left[(1 - f_{N})e^{-\Gamma t f_{N}} + e^{ig\Delta t}e^{-\Gamma t (1 - f_{N})} \right]$$
$$\times \prod_{N} \left[(1 - f_{N})e^{-\Gamma t f_{N}} + e^{-ig\Delta t}e^{-\Gamma t (1 - f_{N})} \right]$$

$$\Gamma_{\varphi} = \Gamma \frac{T}{\Delta} \quad \text{zero mode dephasing}$$

Quantum beats in the dephasing action

Persistent-current blockade

Sum over the winding number:

 $t_n = 2\pi(n+1/2)/\Delta$

$$\frac{G_{\rm int}(\phi)}{G(0)} \simeq -\frac{2\pi\Gamma}{\Delta} \sum_{n=0}^{\infty} \cos[2\Delta(\phi - 1/2)t_n] e^{-\Gamma t_n - S(t_n)}$$

$$\frac{G(\phi)}{G(0)} \approx \frac{1}{Z} \sum_{N_R, N_L} e^{-\epsilon_{N_R, N_L}/T} \left[1 - \frac{\Gamma \Gamma_{\varphi}}{\Delta^2 (\phi - 1/2 - gJ)^2 + \Gamma_{\varphi}^2} \right]$$
$$\Gamma_{\varphi} = \Gamma \frac{T}{\Delta}$$

Quantum properties of Luttinger liquid

$$\Gamma \to \Gamma \left(\frac{T}{E_F}\right)^{g^2/2}$$

Renormalization of the tunneling rate

Tunneling Hamiltonian (point contact): small γ

Perturbative renormalization $(q <<1, \gamma << 1)$:

fermion loop -> opposite sign

Summary of the main results

height of n-th resonance: $\left(\frac{G_{int}}{G_{cl}}\right)_n = \exp(-n^2\Delta/T)\left(\frac{\Delta}{T}\right)^{3/2}$

width of the resonances: $\delta \phi = \frac{\Gamma_{\varphi}}{\Delta}$

persistent current blocks tunneling current

$$\begin{split} & \frac{G_{int}(\Phi)}{G(0)} \simeq - \left\langle \frac{\Gamma \Gamma_{\varphi}}{[\phi - 1/2 - \alpha J]^2 \Delta^2 + \Gamma_{\varphi}^2} \right\rangle_{\rm Gibbs} \\ & {\sf Zero-mode \ dephasing:} \quad \Gamma_{\varphi} = \Gamma T / \Delta \end{split}$$

Conclusions

- Electron-electron interactions → profound effect on transport through a single-channel ring
- Main phenomenon: persistent-current blockade
- PCB-induced splitting of AB antiresonances
- Zero-mode dephasing due to fluctuations of PCB
- PCB is robust (spin, curvature, asymmetry...)